
Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE
“Icy”

How to Access the CSPICE library from the
Interactive Data Language (IDL)©

November 2014

© Exelis

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 2

Topics

•  Icy Benefits
•  How does it work?
•  Distribution
•  Icy Operation
•  Vectorization
•  Simple Use of Icy Functionality

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 3

•  Ease of use: Icy operates as an extension to the IDL
language regime.

•  Icy supports more than three-hundred CSPICE routines.
•  Icy calls usually correspond to the call format of the

underlying CSPICE routine, returning IDL native data types.
•  Icy has some capability not available in CSPICE such as

vectorization.
•  CSPICE error messages return to IDL in a form usable by the

catch error handler construct.

Icy Benefits

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 4

•  The IDL environment includes an intrinsic capability to use
external routines.

–  Icy functions as an IDL Dynamically Loadable Module
(DLM). A DLM consists of a shared object library
(icy.so/.dll) and a DLM text definition file (icy.dlm).
»  The shared library contains a set of IDL callable C interface routines

that wrap a subset of CSPICE wrapper calls.
»  The text definition file lists the routines within the shared library and

the format for the routine’s call parameters.
•  Using Icy from IDL requires you register the Icy DLM with IDL

to access the interface routines. Several means exist to do
so.

–  On Unix/Linux, start IDL from the directory containing icy.dlm
and icy.so

How Does It Work? (1)

continued on next page

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 5

How Does It Work? (2)

–  From the IDL interpreter (or from a command script), execute the
dlm_register command: IDL> dlm_register,’_path_to_directory_containing_icy.dlm_’

»  Examples (Unix and Windows):
»  IDL> dlm_register, ‘/naif/icy/lib/icy.dlm’
»  IDL> dlm_register, ‘c:\naif\icy\lib\icy.dlm’

–  Copy icy.dlm and icy.so or icy.dll to IDL's binary directory:
{The IDL install directory}/bin/bin.user_architecture
»  Examples (Unix and Windows):

»  cp icy.dlm icy.so /Applications/exelis/idl/bin/bin.darwin.x86_64/
»  cp icy.dlm icy.dll C:\Program Files\Exelis\idl83\bin\bin.x86_64\

–  Append to the IDL_DLM_PATH environment variable the
directory name containing icy.dlm and icy.so or icy.dll:
setenv IDL_DLM_PATH "<IDL_DEFAULT>:_path_to_directory_containing_icy.dlm_”

 Caveat: with regards to the Icy source directory, icy/src/icy, do not invoke IDL from the directory,

do not register the directory, and do not append to IDL_DLM_PATH the directory. This directory
contains an “icy.dlm” but no “icy.so.”

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 6

When a user invokes a call to a DLM routine:

 1. IDL calls…
 2. the interface routine in the shared object
 library, linked against…
 3. CSPICE, which performs its function and
 returns the result…
 4. to IDL…

… transparent from the user’s perspective.

How Does It Work? (3)

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 7

Icy Distribution

•  NAIF distributes the Icy package as an independent product
analogous to SPICELIB and CSPICE.

•  The package includes:
–  the CSPICE source files
–  the Icy interface source code
–  platform specific build scripts for Icy and CSPICE
–  IDL versions of the SPICE cookbook programs, states, tictoc,

subpt, and simple
–  an HTML based help system for both Icy and CSPICE, with the

Icy help cross-linked to CSPICE
–  the Icy shared library and DLM file. The system is ready for use

after installation of the these files
•  Note: You do not need a C compiler to use Icy.

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 8

Icy Operation (1)

•  A user may occasionally encounter an IDL math exception:

 % Program caused arithmetic error: Floating underflow

–  This warning occurs most often as a consequence of CSPICE
math operations.

•  In all known cases, the SIGFPE exceptions caused by
CSPICE can be ignored. CSPICE assumes numeric underflow
as zero.

–  A user can adjust IDL’s response to math exceptions by setting
the !EXCEPT variable:
»  !EXCEPT = 0 suppresses the SIGFPE messages, and even more

(e.g. a fatal error).
»  !EXCEPT = 1, the default, reports math exceptions on return to the

interactive prompt.
•  NAIF recommends this be used.

»  !EXCEPT = 2 reports exceptions immediately after executing the
command.

continued on next page

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 9

Icy Operation (2)

•  A possible irritant exists in loading kernels using
the cspice_furnsh function.

– Kernels are loaded into your IDL session, not into your
IDL scripts. This means:

»  loaded binary kernels remain accessible (“active”)
throughout your IDL session

»  data from loaded text kernels remain in the kernel pool (in
the IDL memory space) throughout your IDL session

– Consequence: some kernel data may be available to one
of your scripts even though not intended to be so.

»  You could get incorrect results!
»  (If you run only one script during your IDL session, there’s

no problem.)

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 10

– Mitigation: two approaches
»  Load all needed SPICE kernels for your IDL session at

the beginning of the session, paying careful attention
to the files loaded and the loading order (loading order
affects precedence)

•  Convince yourself that this approach will provide ALL of the
scripts you will run during this IDL session with the appropriate
SPICE data

» At or near the end of every IDL script you write:
•  provide a call to cspice_unload for each kernel loaded

using cspice_furnsh
•  provide a call to cspice_kclear to remove ALL kernel

data from the kernel pool

Icy Operation (3)

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 11

Icy Vectorization (1)

•  Several common Icy functions include use of vectorized
arguments, a capability not available in C or FORTRAN
toolkits.

–  Note: IDL indexes arrays using a base value of zero as opposed
to FORTRAN, which uses a base value of one.

»  Example: access the first element of an IDL 1xN array using
array[0], the second element using array[1], etc.

•  Example: use Icy to retrieve state vectors and light-time
values for 1000 ephemeris times.

–  Create an array of 1000 ephemeris times with step size of 10
hours, starting from July 1, 2005.

cspice_str2et, 'July 1, 2005', start

et = dindgen(1000)*36000.d + start

continued on next page

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 12

–  Retrieve the state vectors and corresponding light times from
Mars to earth at each et, in the J2000 frame, using LT+S
aberration correction:!

cspice_spkezr, 'Earth', et, 'J2000', 'LT+S', 'MARS', state, ltime

–  Access the ith state 6-vector corresponding to the ith ephemeris

time with the expression

state_i = state[*,i]

•  Convert the ephemeris time vector et from the previous
example to UTC calendar strings with three decimal places
accuracy.
!

format = 'C'

prec = 3

cspice_et2utc, et, format, prec, utcstr!

Icy Vectorization (2)

continued on next page

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 13

–  The call returns utcstr, an array of 1000 strings each ith string
the calendar date corresponding to et[i]. Access the ith string of
utcstr corresponding to the ith ephemeris time with the expression

utcstr_i = utcstr[i]

•  Convert the position components of the N state vectors to
latitudinal coordinates (the first three components of a state
vector - IDL uses a zero based vector index).

!
cspice_reclat, state[0:2,*], radius, latitude, longitude

!

–  The call returns three double precision variables of type
Array[1000] (vectorized scalars): radius, latitude, longitude.

Icy Vectorization (3)

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 14

Simple Use of Icy Functionality

•  As an example of using Icy with vectorization, calculate and
plot, in the J2000 inertial frame, the trajectory of the Cassini
spacecraft from June 20 2004 to December 1 2005.

;; Construct a meta kernel, "standard.tm”, which will be used to load the needed
;; generic kernels: "naif0009.tls," "de421.bsp,” and "pck0009.tpc.”

;; Load the generic kernels using the meta kernel, and a Cassini spk.

cspice_furnsh, 'standard.tm'
cspice_furnsh, '/kernels/cassini/spk/030201AP_SK_SM546_T45.bsp'

;; Define the number of divisions of the time interval and the time interval.

STEP = 10000
utc = ['Jun 20, 2004', 'Dec 1, 2005']
cspice_str2et, utc, et

times = dindgen(STEP)*(et[1]-et[0])/STEP + et[0]

cspice_spkpos, 'Cassini', times, 'J2000', 'NONE', 'SATURN BARYCENTER', pos, ltime

;; Plot the resulting trajectory.

x = pos[0,*]
y = pos[1,*]

z = pos[2,*]
iplot, x, y, z

cspice_kclear

Navigation and Ancillary Information Facility

N IF

IDL Interface to CSPICE 15

Graphic Output using IDL iTool

Trajectory of the Cassini spacecraft, in the J2000 frame, from June 20 2004 to Dec 1 2005

x

y
z

